grassp.pl.protein_clustermap#
- protein_clustermap(data, annotation_key, distance_metric='correlation', linkage_method='average', linkage_metric='cosine', palette='Blues_r', show=True)[source]#
 Clustered heat-map of pair-wise protein distances.
The function computes pairwise distances between proteins (rows of
data.X) usingscipy.spatial.distance.pdist()and performs hierarchical clustering on the resulting distance matrix. The heat-map is rendered withseaborn.clustermap(); protein annotations provided viaannotation_keyare visualised as coloured side bars.- Parameters:
 - data 
AnnData Annotated matrix with proteins as observations (rows) and samples or features as variables (columns).
- annotation_key 
str Column in
data.obscontaining categorical annotations (e.g. curated sub-cellular compartments) to colour the rows/columns.- distance_metric 
Literal['euclidean','cosine','correlation','cityblock','jaccard','hamming'] (default:'correlation') Distance metric used for the pairwise distances passed to
scipy.spatial.distance.pdist().- linkage_method 
Literal['single','complete','average','weighted','centroid','median','ward'] (default:'average') Linkage strategy for
scipy.cluster.hierarchy.linkage().- linkage_metric 
Literal['euclidean','cosine','correlation','cityblock','jaccard','hamming'] (default:'cosine') Metric used within the linkage algorithm. Usually identical to
distance_metricbut can differ.- palette default: 
'Blues_r' Matplotlib/Seaborn palette used for the heat-map color scale.
- show 
bool(default:True) If
True(default) the plot is shown and the function returnsNone. IfFalsethe underlyingseaborn.matrix.ClusterGridobject is returned for further customisation.
- data 
 - Return type:
 ClusterGrid|None- Returns:
 ClusterGrid object if
showisFalse, otherwiseNone.