grassp.pl.protein_clustermap#
- protein_clustermap(data, annotation_key, distance_metric='correlation', linkage_method='average', linkage_metric='cosine', palette='Blues_r', show=True)[source]#
Clustered heat-map of pair-wise protein distances.
The function computes pairwise distances between proteins (rows of
data.X
) usingscipy.spatial.distance.pdist()
and performs hierarchical clustering on the resulting distance matrix. The heat-map is rendered withseaborn.clustermap()
; protein annotations provided viaannotation_key
are visualised as coloured side bars.- Parameters:
- data
AnnData
Annotated matrix with proteins as observations (rows) and samples or features as variables (columns).
- annotation_key
str
Column in
data.obs
containing categorical annotations (e.g. curated sub-cellular compartments) to colour the rows/columns.- distance_metric
Literal
['euclidean'
,'cosine'
,'correlation'
,'cityblock'
,'jaccard'
,'hamming'
] (default:'correlation'
) Distance metric used for the pairwise distances passed to
scipy.spatial.distance.pdist()
.- linkage_method
Literal
['single'
,'complete'
,'average'
,'weighted'
,'centroid'
,'median'
,'ward'
] (default:'average'
) Linkage strategy for
scipy.cluster.hierarchy.linkage()
.- linkage_metric
Literal
['euclidean'
,'cosine'
,'correlation'
,'cityblock'
,'jaccard'
,'hamming'
] (default:'cosine'
) Metric used within the linkage algorithm. Usually identical to
distance_metric
but can differ.- palette default:
'Blues_r'
Matplotlib/Seaborn palette used for the heat-map color scale.
- show
bool
(default:True
) If
True
(default) the plot is shown and the function returnsNone
. IfFalse
the underlyingseaborn.matrix.ClusterGrid
object is returned for further customisation.
- data
- Return type:
ClusterGrid
|None
- Returns:
ClusterGrid object if
show
isFalse
, otherwiseNone
.