grassp.tl.tagm_map_train#
- tagm_map_train(adata, gt_col='markers', method='MAP', numIter=100, mu0=None, lambda0=0.01, nu0=None, S0=None, beta0=None, u=2, v=10, seed=None, inplace=True)[source]#
Train a TAGM-MAP (T-Augmented Gaussian Mixture, MAP variant) model.
The training procedure follows Crook et al. 2018 and estimates component parameters for known marker classes while accommodating an outlier component modelled by a multivariate t distribution.
Workflow#
Split observations into labelled (markers) and unlabelled according to
adata.obs[gt_col]
.Compute empirical hyper-priors if not supplied.
Run an EM algorithm to obtain maximum-a-posteriori (MAP) estimates of component means, covariances and mixing proportions.
Store the fitted parameters in
adata.uns['tagm.map.params']
wheninplace
isTrue
.
- type adata:
- param adata:
anndata.AnnData
with proteins as observations and fractions as variables.- type gt_col:
str
(default:'markers'
)- param gt_col:
Column name identifying marker proteins (default
"markers"
).- type method:
str
(default:'MAP'
)- param method:
Currently only
"MAP"
is implemented; reserved for future.- type numIter:
int
(default:100
)- param numIter:
EM iterations (default
100
).- type mu0:
- param mu0:
Hyper-parameters of the Normal–Inverse-Wishart–Dirichlet prior. If
None
sensible empirical defaults are inferred.- type lambda0:
float
(default:0.01
)- param lambda0:
Hyper-parameters of the Normal–Inverse-Wishart–Dirichlet prior. If
None
sensible empirical defaults are inferred.- type nu0:
- param nu0:
Hyper-parameters of the Normal–Inverse-Wishart–Dirichlet prior. If
None
sensible empirical defaults are inferred.- type S0:
- param S0:
Hyper-parameters of the Normal–Inverse-Wishart–Dirichlet prior. If
None
sensible empirical defaults are inferred.- type beta0:
- param beta0:
Hyper-parameters of the Normal–Inverse-Wishart–Dirichlet prior. If
None
sensible empirical defaults are inferred.- type u:
int
(default:2
)- param u:
Beta prior parameters for the outlier mixing proportion.
- type v:
int
(default:10
)- param v:
Beta prior parameters for the outlier mixing proportion.
- type seed:
- param seed:
Random seed for reproducibility.
- type inplace:
bool
(default:True
)- param inplace:
If
True
(default) write parameters toadata
and returnNone
; otherwise return the parameter dictionary.- rtype:
- returns:
MAP parameter dictionary when
inplace
isFalse
.