grassp.tl.tagm_map_train

Contents

grassp.tl.tagm_map_train#

tagm_map_train(adata, gt_col='markers', method='MAP', numIter=100, mu0=None, lambda0=0.01, nu0=None, S0=None, beta0=None, u=2, v=10, seed=None, inplace=True)[source]#

Train the TAGM MAP model on an AnnData object.

The function splits the data into labelled (marker) and unlabelled subsets based on adata.obs[gt_col]. It then computes MAP estimates for a T-augmented Gaussian mixture model using an EM algorithm.

Parameters:
adata AnnData

AnnData object containing the proteomics data.

gt_col str, optional

Column in adata.obs with marker definitions (default “markers”).

numIter int, optional

Number of EM iterations (default 100).

mu0 np.ndarray, optional

Prior mean vector (default: column means of marker data).

lambda0 float, optional

Prior shrinkage (default 0.01).

nu0 int, optional

Prior degrees of freedom (default: D+2).

S0 np.ndarray, optional

Prior inverse-Wishart scale matrix (default: empirical).

beta0 np.ndarray, optional

Prior Dirichlet concentration (default: ones for each class).

u int, optional

Beta prior parameter for outlier probability (default u=2).

v int, optional

Beta prior parameter for outlier probability (default v=10).

seed int, optional

Random seed.

inplace bool, optional

If True, modifies the input AnnData object in place.

Returns:

dict | None Dictionary of MAP parameters. If inplace is True, the input AnnData object is modified in place.