grassp.pl.tagm_map_contours#
- tagm_map_contours(adata, embedding='umap', size=100, components=None, dimensions=None, levels=4, ax=None, **kwargs)[source]#
Plot posterior density contours of TAGM components in embedding space.
The function draws synthetic observations from the TAGM posterior via
sample_tagm_map()
and projects them into either UMAP or PCA space (depending onembedding
). A kernel–density estimate is then computed for each component and visualized as contour lines.- Parameters:
- adata
AnnData
Annotated data matrix that already contains TAGM posterior parameters in
adata.uns["tagm.map.params"]
and an embedding (UMAP or PCA) fitted byumap()
orscanpy.pp.pca()
.- embedding
Literal
['umap'
,'pca'
] (default:'umap'
) Target space for the contours, either
"umap"
or"pca"
.- size
int
(default:100
) Number of posterior samples to draw per component.
- components
Union
[str
,Sequence
[str
],None
] (default:None
) Specify which dimensions of the embedding to use. Only one pair of dimensions is allowed. Use
components
(Scanpy style string) or adimensions
tuple, not both.- dimensions
Union
[tuple
[int
,int
],Sequence
[tuple
[int
,int
]],None
] (default:None
) Specify which dimensions of the embedding to use. Only one pair of dimensions is allowed. Use
components
(Scanpy style string) or adimensions
tuple, not both.- levels
int
(default:4
) Number of contour levels passed to
seaborn.kdeplot()
.- ax
Axes
|None
(default:None
) Matplotlib axes to plot on. If
None
, the current axes returned bymatplotlib.pyplot.gca()
are used.- **kwargs
Additional keyword arguments forwarded to
seaborn.kdeplot()
.
- adata
- Return type:
Axes
- Returns:
The axes object containing the contour plot (returned for convenience).