grassp.pp.highly_variable_proteins#
- highly_variable_proteins(data, inplace=True, n_top_proteins=None, flavor='seurat', subset=False, batch_key=None, **kwargs)[source]#
 Identify highly variable proteins.
- Parameters:
 - data 
AnnData The annotated data matrix with proteins as observations (rows).
- inplace 
bool(default:True) Whether to store results in data.obs or return them.
- n_top_proteins 
int|None(default:None) Number of highly-variable proteins to keep. If None, use flavor-specific defaults.
- flavor 
Literal['seurat','cell_ranger','seurat_v3','seurat_v3_paper'] (default:'seurat') Method for identifying highly variable proteins. Options are: ‘seurat’ - Seurat’s method (default) ‘cell_ranger’ - Cell Ranger’s method ‘seurat_v3’ - Seurat v3 method ‘seurat_v3_paper’ - Method from Seurat v3 paper
- subset 
bool(default:False) Whether to subset the data to highly variable proteins.
- batch_key 
str|None(default:None) If specified, highly-variable proteins are selected within each batch separately.
- **kwargs
 Additional arguments to pass to scanpy.pp.highly_variable_genes.
- data 
 - Return type:
 - Returns:
 If
inplace=False, returnsDataFrameof highly variable proteins. Ifinplace=True, returnsNoneand stores results indata.obs.
Notes
This function identifies highly variable proteins wrapping the scanpy function
highly_variable_genes(). The results are stored indata.obswith the following fields:highly_variable: boolean indicatormeans: mean expressiondispersions: dispersion of expressiondispersions_norm: normalized dispersion