grassp.tl.calculate_cluster_enrichment#
- calculate_cluster_enrichment(data, cluster_key='leiden', gene_name_key='Gene_name_canonical', gene_sets='custom_goterms_genes_reviewed.gmt', obs_key_added='Cell_compartment', enrichment_ranking_metric='P-value', return_enrichment_res=True, inplace=True)[source]#
Calculate cluster enrichment using gseapy.
- Parameters:
- data
AnnData
Annotated data matrix with proteins as observations (rows)
- cluster_key
str
(default:'leiden'
) Key in data.obs containing cluster assignments
- gene_name_key
str
(default:'Gene_name_canonical'
) Key in data.obs containing gene names
- gene_sets
str
(default:'custom_goterms_genes_reviewed.gmt'
) Gene set database to use for enrichment analysis
- obs_key_added
str
(default:'Cell_compartment'
) Key under which to add enrichment annotations in data.obs
- enrichment_ranking_metric
Literal
['P-value'
,'Odds Ratio'
,'Combined Score'
] (default:'P-value'
) Metric to use for ranking enrichment results. One of: ‘P-value’, ‘Odds Ratio’, ‘Combined Score’
- return_enrichment_res
bool
(default:True
) Whether to return the full enrichment results DataFrame
- inplace
bool
(default:True
) Whether to modify data in place
- data
- Return type:
Union
[AnnData
,DataFrame
,None
]- Returns:
Optional[Union[AnnData, pd.DataFrame]] If inplace=True and return_enrichment_res=True, returns enrichment results DataFrame If inplace=True and return_enrichment_res=False, returns None If inplace=False and return_enrichment_res=True, returns tuple of (data, enrichment_results) If inplace=False and return_enrichment_res=False, returns data