grassp.pp.calculate_qc_metrics#
- calculate_qc_metrics(data, qc_vars=(), percent_top=(50, 100, 200, 500), layer=None, use_raw=False, inplace=True, log1p=True, var_type='proteins', expr_type='intensity', parallel=None)[source]#
Calculate quality control metrics.
This function is a wrapper around
scanpy.pp.calculate_qc_metrics()
scanpy.pp.calculate_qc_metrics
. It calculates quality control metrics for proteins and samples and adds them todata.obs
anddata.var
.- Parameters:
- data
AnnData
The annotated data matrix.
- qc_vars
Union
[Collection
[str
],str
] (default:()
) Column names in
.obs
to add to the QC metrics.- percent_top
Optional
[Collection
[int
]] (default:(50, 100, 200, 500)
) Which proportions of top genes to cover.
- layer
str
|None
(default:None
) Layer to use for QC metric calculation.
- use_raw
bool
(default:False
) Whether to use
.raw
for calculation.- inplace
bool
(default:True
) Whether to add the QC metrics to the AnnData object.
- log1p
bool
(default:True
) Whether to log1p the expression values before calculating QC metrics.
- var_type
str
(default:'proteins'
) The type of variables in the data.
- expr_type
str
(default:'intensity'
) The type of expression values in the data.
- parallel
bool
|None
(default:None
) Whether to run the calculation in parallel.
- data
- Return type:
- Returns:
- if
inplace=True
. None
and modifies the data.obs
and.var
with the QC metrics.- if
inplace=False
, a tuple with protein-wise and sample-wise QC metrics: protein_qc_metrics:
pd.DataFrame
with protein-wise QC metricssample_qc_metrics:
pd.DataFrame
with sample-wise QC metrics
- if