grassp.pp.impute_gaussian#
- impute_gaussian(data, width=0.3, distance=1.8, per_sample=True, random_state=0, inplace=True)[source]#
 Impute missing values using a Gaussian distribution.
This function imputes missing values (zeros) in the data matrix using a Gaussian distribution. The parameters of the Gaussian are derived from the observed (non-zero) values, with the mean shifted downward by a specified number of standard deviations.
- Parameters:
 - data 
AnnData Annotated data matrix with proteins as observations (rows).
- width 
float(default:0.3) Width of the Gaussian distribution as a fraction of the standard deviation of observed values.
- distance 
float(default:1.8) Downward shift of the mean in standard deviations.
- per_sample 
bool(default:True) If True, computes parameters for each sample separately.
- random_state 
Union[int,RandomState,None] (default:0) Seed for the random number generator.
- inplace 
bool(default:True) If True, modifies data inplace.
- data 
 - Return type:
 - Returns:
 numpy.ndarray or None If
inplace=False, returns the imputed data matrix. Ifinplace=True, returns None and modifies the input data.
Notes
This implements a simple but effective imputation strategy commonly used in proteomics data analysis. Missing values are assumed to be below detection limit and are imputed from a Gaussian distribution with parameters derived from the observed values but shifted downward.