grassp.pl.tagm_map_pca_ellipses#
- tagm_map_pca_ellipses(adata, stds=[1, 2, 3], dimensions=None, components=None, ax=None, scatter_kwargs={}, **kwargs)[source]#
Visualize TAGM component covariance as ellipses in PCA space.
For each TAGM component the posterior covariance matrix is projected into PCA space and visualised as an ellipse representing n standard- deviation contours (defined by the stds list).
- Parameters:
- adata
AnnData
Annotated data matrix that contains
adata.varm["PCs"]
(loadings) and TAGM posterior parameters underadata.uns["tagm.map.params"]
.- stds
List
[int
] (default:[1, 2, 3]
) Radii of the ellipses in standard deviations. Typical choices are
[1, 2, 3]
which correspond to the 68 %, 95 % and 99.7 % confidence regions of a multivariate normal distribution.- dimensions
tuple
[int
,int
] |None
(default:None
) Specify which principal components to plot—either via an explicit dimensions tuple (0-based indices) or the Scanpy-style components string (e.g.
"1,2"
).- components
Union
[str
,Sequence
[str
],None
] (default:None
) Specify which principal components to plot—either via an explicit dimensions tuple (0-based indices) or the Scanpy-style components string (e.g.
"1,2"
).- ax
Axes
|None
(default:None
) Matplotlib axes to plot on. If None,
matplotlib.pyplot.gca()
is used.- scatter_kwargs
dict
|None
(default:{}
) Additional keyword arguments forwarded to
scatter()
.- **kwargs
Additional keyword arguments forwarded to
Ellipse
(e.g.linewidth
,alpha
).
- adata
- Return type:
Axes
- Returns:
The axes with the ellipse overlay (returned if show is False).