grassp.pl.tagm_map_pca_ellipses#
- tagm_map_pca_ellipses(adata, stds=[1, 2, 3], dimensions=None, components=None, ax=None, scatter_kwargs={}, **kwargs)[source]#
 Visualize TAGM component covariance as ellipses in PCA space.
For each TAGM component the posterior covariance matrix is projected into PCA space and visualised as an ellipse representing n standard- deviation contours (defined by the stds list).
- Parameters:
 - adata 
AnnData Annotated data matrix that contains
adata.varm["PCs"](loadings) and TAGM posterior parameters underadata.uns["tagm.map.params"].- stds 
List[int] (default:[1, 2, 3]) Radii of the ellipses in standard deviations. Typical choices are
[1, 2, 3]which correspond to the 68 %, 95 % and 99.7 % confidence regions of a multivariate normal distribution.- dimensions 
tuple[int,int] |None(default:None) Specify which principal components to plot—either via an explicit dimensions tuple (0-based indices) or the Scanpy-style components string (e.g.
"1,2").- components 
Union[str,Sequence[str],None] (default:None) Specify which principal components to plot—either via an explicit dimensions tuple (0-based indices) or the Scanpy-style components string (e.g.
"1,2").- ax 
Axes|None(default:None) Matplotlib axes to plot on. If None,
matplotlib.pyplot.gca()is used.- scatter_kwargs 
dict|None(default:{}) Additional keyword arguments forwarded to
scatter().- **kwargs
 Additional keyword arguments forwarded to
Ellipse(e.g.linewidth,alpha).
- adata 
 - Return type:
 Axes- Returns:
 The axes with the ellipse overlay (returned if show is False).