grassp.pp.calculate_enrichment_vs_untagged#
- calculate_enrichment_vs_untagged(data, covariates=None, subcellular_enrichment_column='subcellular_enrichment', untagged_name='UNTAGGED', original_intensities_key=None, drop_untagged=True, keep_raw=True)[source]#
 Calculates enrichment scores and p-values by comparing tagged samples against untagged controls.
This function performs a t-test to determine the significance of protein enrichment in tagged samples relative to untagged controls. The enrichment is calculated as the log2 fold change of median intensities.
- Parameters:
 - data 
AnnData An AnnData object with protein intensities in
.X.- covariates 
Optional[Sequence[str]] (default:None) A list of column names in
data.varto group samples. If None, columns starting withcovariate_are used.- subcellular_enrichment_column 
str(default:'subcellular_enrichment') The column in
.varthat contains subcellular enrichment labels.- untagged_name 
str(default:'UNTAGGED') The label in
subcellular_enrichment_columnthat identifies untagged control samples.- original_intensities_key 
Optional[str] (default:None) If specified, the original intensity values are stored in
data.layers[original_intensities_key].- drop_untagged 
bool(default:True) If True, untagged samples are removed from the returned AnnData object.
- keep_raw 
bool(default:True) If True, the original unaggregated data is stored in
.raw.
- data 
 - Return type:
 - Returns:
 AnnData Aggregated AnnData object with enrichment scores and p-values, with:
.X: log2 fold changes relative to untagged controls..layers["pvals"]: p-values from the t-tests..layers[original_intensities_key]: raw intensity values iforiginal_intensities_keyis set.