grassp.tl.tagm_map_predict

grassp.tl.tagm_map_predict#

tagm_map_predict(adata, params=None, gt_col=None, probJoint=False, probOutlier=True, inplace=True)[source]#

Predict subcellular localization for unknown proteins using MAP parameters.

This function calculates the probabilities for each component (both Gaussian and t-distribution contributions) for each unlabelled protein (where adata.obs[gt_col] is NA). It assigns the label from the Gaussian part with the highest probability and stores the predictions and probabilities in adata.obs.

Parameters:
adata AnnData

AnnData object containing the proteomics data.

params dict, optional

MAP parameters as returned by tagm_map_train. If None, the function will try to retrieve them from adata.uns[“tagm.map.params”].

gt_col str, optional

Column in adata.obs with marker labels (default is “markers”).

probJoint bool, optional

If True, also compute and store the joint probability matrix (default is False).

probOutlier bool, optional

If True, store the probability of being an outlier (default is True).

inplace bool, optional

If True, modify the input AnnData object in place.

Return type:

DataFrame | None

Returns:

pd.DataFrame | None The DataFrame with new observation columns containing the predictions and probabilities. If inplace is True, the input AnnData object is modified in place.